- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Acar, Pınar (2)
-
Billah, Md_Maruf (2)
-
Agrawal, Ankit (1)
-
Choudhary, Alok (1)
-
Eger, Zekeriya_Ender (1)
-
Elleithy, Mohamed (1)
-
Eğer, Zekeriya_Ender (1)
-
Hasan, Md_Mahmudul (1)
-
Khan, Waris (1)
-
Kilic, Muhammed_Nur_Talha (1)
-
Liu, Sheng (1)
-
Long, Matthew (1)
-
Mao, Yuwei (1)
-
Sundararaghavan, Veera (1)
-
Wang, Kewei (1)
-
Yıldız, Saltuk (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the large deformation behavior of materials under external forces is crucial for reliable engineering applications. The mechanical properties of materials depend on their underlying microstructures, which change over time during deformation. Experimental observation of these processes is time-consuming and influenced by various conditions. Therefore, we developed , a physics-based simulation tool to replicate the deformation process of cubic microstructures. can predict the evolution of texture, represented by the orientation distribution function (ODF), over time under various loads and strain rates. This software package can be run on both Windows and Linux operating systems. Unlike conventional crystal plasticity finite element software, offers a distinct advantage by rapidly generating deformed textures, as it bypasses incorporating grain morphology. Furthermore, comparisons with existing experimental and computational studies on texture evolution have demonstrated that this software seamlessly replicates real-world material processing conditions through a simple modification of a single input matrix.more » « less
-
Billah, Md_Maruf; Elleithy, Mohamed; Khan, Waris; Yıldız, Saltuk; Eğer, Zekeriya_Ender; Liu, Sheng; Long, Matthew; Acar, Pınar (, Advanced Engineering Materials)In this review, state‐of‐the‐art studies on the uncertainty quantification (UQ) of microstructures in aerospace materials is examined, addressing both forward and inverse problems. Initially, it introduces the types of uncertainties and UQ algorithms. In the review, the forward problem of uncertainty propagation in process–structure and structure–property relationships is then explored. Subsequently, the inverse UQ problem, also known as the design under uncertainty problem, is discussed focusing on structure–process and property–structure linkages. Herein, the review concludes by identifying gaps in the current literature and suggesting key areas for future research, including multiscale topology optimization under uncertainty, implementing physics‐informed neural networks to UQ problems, investigating the effects of uncertainty on extreme mechanical behavior, reliability‐based design, and UQ in additive manufacturing.more » « less
An official website of the United States government
